

Motivation

One or several extreme weather events (EWEs) can have a substantial impact on seasonal temperature and precipitation statistics.

Jamie Henn - Twitter

Motivation

One or several extreme weather events (EWEs) can have a substantial impact on seasonal temperature and precipitation statistics.

EWEs need to be considered in describing and understanding the processes that operate at the weather-climate intersection.

Jamie Henn - Twitter

Motivation

One or several extreme weather events (EWEs) can have a substantial impact on seasonal temperature and precipitation statistics.

EWEs need to be considered in describing and understanding the processes that operate at the weather-climate intersection.

An increased understanding of **EWEs** has the potential to improve temperature and precipitation forecasts for the 8–10 day period.

Jamie Henn - Twitter

Objectives

- 1) To identify the governing atmospheric flow patterns essential to the evolution of two recent EWEs:
 - 22-24 January 2016 Blizzard
 - 22–23 December 2013 Ice Storm

Objectives

- 1) To identify the governing atmospheric flow patterns essential to the evolution of two recent EWEs:
 - 22-24 January 2016 Blizzard
 - 22–23 December 2013 Ice Storm
- 2) To evaluate the skill of operational GFS and GEFS forecasts for these events.

Objectives

- 1) To identify the governing atmospheric flow patterns essential to the evolution of two recent EWEs:
 - 22-24 January 2016 Blizzard
 - 22–23 December 2013 Ice Storm
- 2) To evaluate the skill of operational GFS and GEFS forecasts for these events.
- 3) To outline a research plan that desires to systematically identify, classify, and evaluate EWEs.

~1,125,000 km² affected.

24 million people resided in locations with >50 cm of snow.

~500,000 lost power along the East Coast.

55 fatalities attributed to the storm.

24-h Snow Accumulation

Ending: 0600 UTC 23 January 2016

Ending: 0600 UTC 24 January 2016

NOHRSC

Mean SLP (hPa; green)

250 hPa Wind Speed (m s⁻¹; fill) Mean SLP (hPa; green) 1000-500 hPa Thickness (dam; dashed)

250 hPa Wind Speed (m s⁻¹; fill) Mean SLP (hPa; green) 1000-500 hPa Thickness (dam; dashed)

250 hPa Wind Speed (m s⁻¹; fill) Mean SLP (hPa; green)

1000-500 hPa Thickness (dam; dashed)

120-h Forecast

6-h Accumulated Precipitation; Every 10 mm

96-h Forecast

6-h Accumulated Precipitation; Every 10 mm

72-h Forecast

6-h Accumulated Precipitation; Every 10 mm

48-h Forecast

6-h Accumulated Precipitation; Every 10 mm

24-h Forecast

6-h Accumulated Precipitation; Every 10 mm

00-h Forecast

6-h Accumulated Precipitation; Every 10 mm

Ens. Mean **Analysis**

925 hPa Pot. **Temp**; Every 5 K

sis;

K (100 km)⁻¹(3 h)⁻¹

GEFS Forecasts Verifying

1800 UTC 23 Jan 2016

120-h Forecast

925 hPa Frontogenesis; Every 0.5 K (100 km)⁻¹ (3 h)⁻¹

$$F_{2D} = \frac{|\nabla \theta|}{2} [E\cos(2\beta) - D]$$

$$E = Total Deformation$$

 $D = Divergence$

$$eta=rac{Angle\ Betw.\ Isentropes\ and\ Axis\ of\ Dilatation}$$

120-h Forecast

925 hPa Frontogenesis; Every 0.5 K (100 km)⁻¹ (3 h)⁻¹

925 hPa Convergence; Every 2x10⁻⁵ s⁻¹

925 hPa
Deformation;
Every
2x10⁻⁵ s⁻¹

96-h Forecast

925 hPa Frontogenesis; Every 0.5 K (100 km)⁻¹ (3 h)⁻¹

925 hPa Convergence; Every 2x10⁻⁵ s⁻¹

925 hPa
Deformation;
Every
2x10⁻⁵ s⁻¹

72-h Forecast

925 hPa Frontogenesis; Every 0.5 K (100 km)⁻¹ (3 h)⁻¹

925 hPa

925 hPa

Every 2x10⁻⁵ s⁻¹

Deformation; **Every** 2x10⁻⁵ s⁻¹

48-h Forecast

925 hPa Frontogenesis; Every 0.5 K (100 km)⁻¹ (3 h)⁻¹

925 hPa Convergence; Every 2x10⁻⁵ s⁻¹

925 hPa
Deformation;
Every
2x10⁻⁵ s⁻¹

24-h Forecast

925 hPa Frontogenesis; Every 0.5 K (100 km)⁻¹ (3 h)⁻¹

925 hPa **Deformation**; **Every** 2x10⁻⁵ s⁻¹

925 hPa

Every 2x10⁻⁵ s⁻¹

GEFS Forecasts Verifying 1800 UTC 23 Jan 2016

00-h Forecast

925 hPa Frontogenesis; Every 0.5 K (100 km)⁻¹ (3 h)⁻¹

925 hPa Convergence; Every 2x10⁻⁵ s⁻¹

925 hPa
Deformation;
Every
2x10⁻⁵ s⁻¹

GFS Analysis 1800 UTC 23 Jan 2016

700 hPa Q-vector Convergence, Q-vectors, and Pot. Temp.

700 hPa Q_s
Convergence,
Q_s vectors,
and Pot.
Temp.

700 hPa Q_n
Convergence,
Q_n vectors,
and Pot.
Temp.

Case Summary

- The event was well-forecasted by the operational GFS as many as 9 days prior to the event.
- Considerable uncertainty with respect to the amount and location of precipitation along the bent-back warm front lingered prior to the event.
- The spread in several diagnostics for vertical motion reflected the uncertainty in accurately forecasting total snow accumulations.

- > 30 mm of ice in some locations.
- > 400,000 lost power in Ontario, Quebec, and in the Canadian Maritimes.

Gusty winds in excess of 15 m s⁻¹.

The Canadian Press

90

100

80

60

250 hPa Wind Speed (m s⁻¹;

1000-500 hPa **Thickness**

Mean SLP (hPa; green)

250 hPa Wind Speed (m s⁻¹; fill)

1000-500 hPa Thickness (dam; dashed)

Mean SLP (hPa; green)

m s⁻¹ — Trough Axis

240-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

216-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

192-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

168-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

——— GEFS Ens. Mean

144-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

120-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

96-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

72-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

48-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

24-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

00-h Forecast

1000 hPa Geo.
Height (m)
Verifying
1200 UTC
22 December

GEFS Ens. Mean

14 December - 192 h

1000 hPa Geo. Height (m; black)

500 hPa Geo. Height (dam; red)

850 hPa Geo. Height (m; black)

850 hPa Pot. Temp. (K; red)

16 December - 144 h

1000 hPa Geo. Height (m; black)

500 hPa Geo. Height (dam; red)

Difference in 500 hPa Geo. Height from forecast initialized 48-h earlier (m; shaded)

850 hPa Geo. Height (m; black)

850 hPa Pot. Temp. (K; red)

18 December - 96 h

1000 hPa Geo. Height (m; black)

500 hPa Geo. Height (dam; red)

Difference in 500 hPa Geo. Height from forecast initialized 48-h earlier (m; shaded)

850 hPa Geo. Height (m; black)

850 hPa Pot. Temp. (K; red)

20 December - 48 h

1000 hPa Geo. Height (m; black)

500 hPa Geo. Height (dam; red)

Difference in 500 hPa Geo. Height from forecast initialized 48-h earlier (m; shaded)

850 hPa Geo. Height (m; black)

850 hPa Pot. Temp. (K; red)

22 December - 00 h

1000 hPa Geo. Height (m; black)

500 hPa Geo. Height (dam; red)

Difference in 500 hPa Geo. Height from forecast initialized 48-h earlier (m; shaded)

850 hPa Geo. Height (m; black)

850 hPa Pot. Temp. (K; red)

Case Summary

- Forecast spread decreased sharply 96-h prior to the event throughout the eastern United States.
- Forecasts with a lead time greater than 96-h exhibited considerable uncertainty in the location and strength of the surface cyclone.
- Forecasts exhibited uncertainty with respect to the location, strength, and magnitude of frontogenesis along the baroclinic zone as little as 48-h prior to the event.

Identify extreme temperature, precipitation events.

Identify extreme temperature, precipitation events.

Perform a composite analysis on each event type to determine the **antecedent environments** that favor the development of an EWE.

Identify extreme temperature, precipitation events.

Perform a composite analysis on each event type to determine the **antecedent environments** that favor the development of an EWE.

Examine 8-10 day forecast skill for EWEs that fall into each event type.

Identify extreme temperature, precipitation events.

Perform a composite analysis on each event type to determine the **antecedent environments** that favor the development of an EWE.

Examine 8-10 day forecast skill for EWEs that fall into each event type.

Develop products that have the potential to provide a "first-alert" to the potential for EWEs.

